Category Archives: Circular Economy

Recycling Rant – Mixed Materials

I know that recycling shouldn’t be our first line of defense to handle our waste streams, but it is something that can help divert materials from the landfill once they already have been created. But you wanna know what really grinds my gears? Mixed material food packaging. Sure, China’s National Sword cut a great big hole through US recycling efforts, but we can still recycle #1 and #2 plastics in most municipalities, and #5 if there’s a Whole Foods somewhere in your area.

If we want to encourage recycling though, we need it to be easy. People are busy, making their waste stream pretty low on their priority list. So, why on Earth would you make a dairy container out of #5 plastic and put a #2 lid on it? You took the time to make sure the two plastics looked identical for cohesive branding, but the only visual difference to the consumer is if they look at the little recycle triangle on BOTH parts of the package. Is this easy? NO! Store bought icing is even worse with its #5 or #2 body and #4 lid. Where the heck am I supposed to recycle a #4 that isn’t a plastic film like a bread bag?

man wearing teal long sleeved shirt

Photo by Anas Jawed on Pexels.com

As engineers, I know we want to find the optimal solution for every component of a design, but for single-use containers, end-of-life needs to be high on that priority list. I’m not a food packaging engineer, but my hierarchy of design would go something like safety/preservation of food, taste impact, mechanical stability, and end-of-life. I’ll grant you that you can’t package in something that will impact taste or safety, but is that #2 lid really making enough of a difference in your product that it’s worth confusing people so you get #2 and #5 plastics mixed up in each other waste streams?

If you ARE a food packaging engineer, I’m begging you to please consider end of life when designing your products. We are on a finite planet, and because plastic is such a useful material, I would really love it if we could easily reclaim it for future use. Whether it’s particularly safe for contact with food or whether we really need so much of it is a whole ‘nother ball of wax. For today, please think through your material choices and try to find ways to make recycling easier.

Moving toward a zero waste, solarpunk, circular economy is high on my wish list for the world, and there’s plenty of research that shows that unless you make something easier than the alternative, people just don’t have the bandwidth. The onus is on the designer, not the consumer for this. We can do better – please do!

Is there anything you’ve run across that was packaged ridiculously? Let us know below!

Advertisements

Tidalpunk, logistics, and degrowth

Grist recently ran an article about a Costa Rican project to build a carbon neutral shipping fleet using traditional wooden boat building techniques including sails as the primary means of propulsion. Maria Gallucci writes that the worldwide commercial shipping industry moves 10.7 billion tonnes of material every year, predominantly by diesel powered megaships.

This seems particularly problematic when we look at the 262 million tonnes of municipal waste generated in the US alone every year. The article about the Costa Rican fleet said sailing vessels wouldn’t be able to make up a large proportion of the shipping fleet, but the question I had was, “Do we really need to be shipping this much stuff?”

While capitalism is based on unending, cancerous growth, there is a growing community of people around the world investigating how dialing back the economy could be better for people and the planet. When coupled with a circular economy, the degrowth movement points toward a brighter, greener future like that envisioned in solarpunk. Decentralized, local production of goods using recycled technical and biological nutrients would lead to a more resilient and less energy-intensive supply chain.

Some front-line communities are already leading the charge against climate change by developing solutions that are much more relevant to their local environment than the one-size-fits-all techno-solutionism often argued for in the US and other western countries.

What do you think? Should we just find “sustainable” ways to keep consumption at it’s current levels, or should we reevaluate our relationships with material goods? Let us know below!

Rethinking batteries

close up photo of batteries

Photo by Hilary Halliwell on Pexels.com

As an engineer, I’m always thinking of how to make the objects around me work better. After rereading Cradle to Cradle this year, I’ve also been considering how to balance the needs of the present and the end of an object’s life.

When I was an undergrad, I did research in energy materials, so my interest was piqued when I saw the Volta Battery concept by Koraldo Kajanaku that won the Cradle to Cradle Product Design Challenge. Designed to be easily disassembled and made with materials that can easily be returned to technical or biological cycles, the battery is an excellent example of everyday objects that could be made better through thoughtful design.

The current ways in which we build batteries, solar panels, and wind turbines can’t get us all the way to a 100% renewable, solarpunk future. Elements such as the lithium used in cellphone batteries are rare and have some hurdles to true recyclability. Lead acid batteries, while more easily recycled, contain materials that are very hazardous to human health when not properly contained. Lithium batteries are an amazing technology, but we should be finding more readily recyclable alternatives for applications that don’t absolutely require the high energy density that a lithium chemistry affords. Aluminum, iron, nickel, and zinc could use a little more love when it comes to research and development. Nickel iron cells, for example, are likely the most robust chemistry available. They are quite heavy at the moment, but they might be one of the best options for grid backups since they don’t require the coddling that other technologies do. For the tidalpunks out there, you might want to check out ocean batteries.

More diversity of battery chemistries could lead to more energy democracy in energy storage. Communities could build the chemistry that uses the most local resources to back up their renewables. When paired with more sustainably designed windmills or solar thermal plants, we could do a lot more with a lot fewer rare earth minerals. Mechanical approaches to energy storage are also an attractive option. As is often the refrain with sustainable design, there is no silver bullet, we need many different solutions to fit the many different use-cases in existence. The 20th century was concerned with trying to shoehorn all our problems into a fossil fuel-shaped hole. The 21st will be defined by a diverse and beautiful ecosystem of solutions.

Is there an everyday object that you wish was designed more thoughtfully? Let us know below!

The Upcycle — A Review

UpcycleCoverSpiral1-2

The Upcycle by William McDonough and Michael Braungart is the followup to Cradle to Cradle. Written in 2013, it brings a decade’s worth of new information and experience to the concept of Cradle to Cradle design thinking.

If you’re interested in the circular economy and can only read one book – this is it. There is a short section at the front that recaps the underlying principles of Cradle to Cradle systems in case you haven’t read the first book. While Cradle to Cradle was groundbreaking for the concept that we should design human industry to be a positive good for the environment, The Upcycle contains many more specific examples of projects where the authors were able to achieve these ends.

For example, in the book there is a story of Dan Juhl who pairs farmers with investors for building renewables on their land. The investors get a guaranteed return on their investment for ten years, and the energy generation equipment reverts to the farmers after this period. More renewables end up on the grid, and families get an additional source of income by owning the means of energy production.

The physical book itself is a nice counterpoint to the design of Cradle to Cradle. While Cradle to Cradle was designed to be reusable in technical nutrient cycles, The Upcycle is designed with biodegradable inks and paper so that it can become a biological nutrient again. One of the main ideas of Cradle to Cradle design is that things should be delineated into two separate nutrient streams: biological and technical. Wood, paper, and things of this nature can be reused as they would be in nature by returning to the land while technical materials like plastics and metals should be reclaimed for infinite technical cycles. Preventing the creation of “monstrous hybrids” is an important goal of the Cradle to Cradle design process. These materials are amalgamations of material that are difficult, if not impossible to separate and reuse. This is particularly harmful if the materials in these hybrids are toxic in nature. The book quotes McDonough, “Let’s put the filters in our heads and not at the end of pipes.”

The Upcycle is a breath of fresh air. McDonough and Braungart show how we can rethink the way we design everyday objects to fit into the constant cycles of Mother Nature and end the insanity of cradle-to-grave mentality. Cradle-to-Cradle design is definitely the way we should be thinking  when we design technologies and objects for our solarpunk future.

Do you use any Cradle to Cradle products in your life? What has your experience been? Let us know below!

Solarpunk Phones Part 4: Magic

woman reading a book

Photo by Pixabay on Pexels.com

[This is Part 4 of a series of posts. Here are links to Part 1: Repair, Part 2: Decentralize, and Part 3: Design.]

Despite marketing jargon, I don’t think that we’ve yet reached the point where our technology is “magical.” A cave person might feel differently, but smartphones, computers, and televisions are clearly tools in my eye. There are a few exceptions, but I want devices that more elegantly flow with our lives instead of us molding our behavior around the device.

In stories, magic feels more like an extension of the being wielding the power. Even when the power source isn’t from within the individual, magic is still channeled through the magic user, so they must be in tune with it, but not consumed by it.

Technology that “just works” is a step in the right direction, since few things are as un-magical as having to reinstall drivers. I think we can go farther though. For me, at least, it’s easy to get lost in the technology itself and lose sight of the end goal of the tech. To be truly magical, I think the device and interface need to melt away so we can focus on the real reason we’re using it. At their core, smartphones are devices for communication. How do we make meaningful communication with those we care about easier?

color conceptual creativity education

Photo by Pixabay on Pexels.com

Take the pencil. As long as it’s sharp, most people don’t spend a lot of time worrying about how much it weighs or how thin it is. It gets the job done and you don’t have to think much about the object itself. There are certainly applications like art where the hardness of the graphite is an important consideration, but for the majority of situations, the pencil is incidental to the outcome of wanting words or doodles on the page. The pencil is an extraordinary piece of technology because it works so well that we pay it barely any heed.

A few devices approach this simplicity: e-readers, Pebble smartwatches, smartpens, the Beeline bike navigator, the Typified weather poster, voice assistants, and most calculators. Maybe I just don’t have the headspace for multi-function gadgets, but for me, the more functionality you cram into a device, the more unwieldy it becomes. Perhaps some brilliant UI/UX designer will come up with a way to make the multi-function nature of the smartphone more seamless, but as of now, I find smartphones to be amazing but kludgy.

The people working on the Skychaser solarpunk comic are doing a great job of thinking of magical technologies. You should definitely check them out if this is something that appeals to you.

I don’t have the answers for finding the right balance of functionality and magic but wanted to explore some of the questions with you. Maybe you have some ideas of how to make technology a little more magical. If you do and want to share, please post something below!

Solarpunk Phones Part 3: Rethinking Design

[This is Part 3 of a series about solarpunk phones. Here are links to Part 1: Repair and Part 2: Decentralize.]

There are essentially two extremes to technological design: the all-in-one device or the single-tasker. Take, for example, the knife. There are lots of single purpose knives – paring, cleaver, steak, etc. There are also several different types of multi-function knives, the best known being the Swiss Army knife. Depending on what task you have at hand, you would select the best knife for the job. Out and about, sometimes the best way to go is to carry the Swiss Army knife, but since it’s a multi-function device, it isn’t usually the best tool for the job, even though a lot of the time it is pretty decent at several different things. Unfortunately, the more functions you cram into a Swiss Army knife, the less useful it becomes at any single task. There’s a certain break-even point where it just gets ridiculous.

Image shows 8 Swiss Army knives from left to right with an increasinly large number of functions.

Victorinox pocket knives by quattroman76 under a CC BY-ND 2.0

While smartphones can do a great many things, since they aren’t really designed to do one specific task, they end up sacrificing the ability to do any one thing really well. I wonder if we’ve lost something by trying to unify all of our devices. Our mobile technology has become a monoculture compared to the wide variety of form factors of phones before a single slate of glass became the norm.

Before the consolidation of iPhone-esque design hit the scene, some people thought the future would be a cloud of wearable devices, the Personal Area Network (PAN). While carrying a number of single-focus gadgets on a common network may not be the best solution for everyone, it could be game changing for some. Also, broader acceptance of PANs might lead to more innovation in the smartphone space with regards to form factor. While there are rumblings of foldable phones, I can’t help but think those are merely an evolution of the current iPhone-centric design school.

This slideshow requires JavaScript.

This slideshow requires JavaScript.

This slideshow requires JavaScript.

Random sketches I made of different hubs/accessories for a PAN-based device

Modular, open source electronics architectures would be a step in the right direction, allowing designers to select off-the-shelf components for inclusion in many different types of devices. The closest things I’ve seen on the market would be the Fairphone, which we’ve mentioned before, and the RePhone Kit, which is an Arduino-compatible phone kit from Seeed Studio. It’s a neat little phone hacking platform that lets people build their own phones. Unfortunately, Rephone is only 2G data capable, meaning no data connection in the US. Motorola gets an honorable mention for the Moto-mods system that lets you add different features to your phone through a special port on the back of their Z-series phones.

Of course it isn’t solarpunk if we aren’t designing with the impact of the device in mind from the beginning. Dominic Muren’s  Skin, Skeleton, and Guts model for product design is one approach to this design problem. When coupled with the Cradle to Cradle idea of separate biological and technical nutrient cycles, I can imagine future devices where the skin of the device is a compostable fabric that can be changed to suit the style of the user, while the metal skeleton and modular, electronic “guts” could be reused in further technical cycles.

TL;DR

In short, when approaching the design of a solarpunk phone, I would want modular components to be at the core to allow for more diversity of form factors like there once was in the mobile space. Also, devices should be designed for the circular economy using safe and reusable/recyclable materials.

Do you have any ideas for what should go into a solarpunk smarphone? Would a PAN be too cumbersome, or do you find that the “Jack of all trades, master of none” nature of the smartphone isn’t worth the trade-offs? Let us know below!

Cradle to Cradle – A review

Book cover for Cradle to Cradle - blue top and green bottom with mirrored vehicle silhouettes

Cradle to Cradle – Remaking the Way We Make Things

Cradle to Cradle by William McDonough and Michael Braungart is about envisioning a better way to manage human interactions with the natural world. The authors ask,

“What if humans designed products and systems that celebrate an abundance of human creativity, culture, and productivity? That are so intelligent and safe, our species leaves an ecological footprint to delight in, not lament?”

Starting from the beginnings of the Industrial Revolution, they analyze the design decisions that led capitalist society to the environmental crossroads it faces today. While things weren’t quite so dire in 2002 when the book was written, its analyses of the pitfalls of rampant industrialization are thorough and thought provoking.

The most refreshing part of this book though is it isn’t just a list of where capitalism went wrong and why we’re all doomed. Cradle to Cradle outlines ways in which designers, engineers, and scientists can work together to deconstruct the current way we make things and redesign our material lives to benefit the natural world. The main idea, which I find to be very solarpunk, is to look at how in nature there is no waste. Everything serves a purpose in the environment. The fruit of the cherry tree feeds birds and animals while those animals spread the seeds of the tree. The droppings of those birds and animals fertilize the ground where the cherry tree and its offspring grow so that they can offer more food. Everything has its place in the cycle.

In one project, a shampoo was redesigned from scratch to only have positive effects by carefully selecting every chemical going into it, including the bottle. Herman Miller had a new factory designed including natural lighting, more ventilation, and a “street” with plants inside to bring nature closer to the workers. As we saw with the Nature Fix, bringing humans and nature together has positive benefits for human health, and by bringing the outdoors in, Herman Miller was able to bring its new focus on environmental sustainability to the forefront.

photo of pile of ripped carton

Photo by Luka Siemionov on Pexels.com

The book isn’t just anecdotes and feel-good aphorisms, it also includes a framework for how to approach design to ensure maximum good. One of the ongoing themes in the book is that so far, most industry has tried to do less bad to the environment when it cares at all, but it’s time to go a step further and see how we can take industry and make it improve the world around us.

A success story in this vein tells of a textile factory in Europe that worked to make a better upholstery fabric for office chairs. When the regulators came to check the factory’s wastewater (effluent), they were confused as the water coming out of the plant was cleaner than that going in.

The equipment was working fine; it was simply that by most parameters the water coming out of the factory was as clean as — or even cleaner than — the water going in. When a factory’s effluent is cleaner than its influent, it might well prefer to use its effluent as influent. Being designed into the manufacturing process, this dividend is free and requires no enforcement to continue or to exploit. Not only did our new design process bypass the traditional responses to environmental problems (reduce, reuse, recycle), it also eliminated the need for regulation, something that any businessperson will appreciate as extremely valuable.

One of the things I’m hoping to investigate further in 2019 is the circular economy, and I think the design strategies outlined in Cradle to Cradle are a good first step in this direction. I found there is a followup book called The Upcycle written in 2013 that I will be checking out from the library soon.

Have you read Cradle to Cradle or have thoughts on the circular economy? Let us know below!