Tag Archives: environment

Recycling Rant – Mixed Materials

I know that recycling shouldn’t be our first line of defense to handle our waste streams, but it is something that can help divert materials from the landfill once they already have been created. But you wanna know what really grinds my gears? Mixed material food packaging. Sure, China’s National Sword cut a great big hole through US recycling efforts, but we can still recycle #1 and #2 plastics in most municipalities, and #5 if there’s a Whole Foods somewhere in your area.

If we want to encourage recycling though, we need it to be easy. People are busy, making their waste stream pretty low on their priority list. So, why on Earth would you make a dairy container out of #5 plastic and put a #2 lid on it? You took the time to make sure the two plastics looked identical for cohesive branding, but the only visual difference to the consumer is if they look at the little recycle triangle on BOTH parts of the package. Is this easy? NO! Store bought icing is even worse with its #5 or #2 body and #4 lid. Where the heck am I supposed to recycle a #4 that isn’t a plastic film like a bread bag?

man wearing teal long sleeved shirt

Photo by Anas Jawed on Pexels.com

As engineers, I know we want to find the optimal solution for every component of a design, but for single-use containers, end-of-life needs to be high on that priority list. I’m not a food packaging engineer, but my hierarchy of design would go something like safety/preservation of food, taste impact, mechanical stability, and end-of-life. I’ll grant you that you can’t package in something that will impact taste or safety, but is that #2 lid really making enough of a difference in your product that it’s worth confusing people so you get #2 and #5 plastics mixed up in each other waste streams?

If you ARE a food packaging engineer, I’m begging you to please consider end of life when designing your products. We are on a finite planet, and because plastic is such a useful material, I would really love it if we could easily reclaim it for future use. Whether it’s particularly safe for contact with food or whether we really need so much of it is a whole ‘nother ball of wax. For today, please think through your material choices and try to find ways to make recycling easier.

Moving toward a zero waste, solarpunk, circular economy is high on my wish list for the world, and there’s plenty of research that shows that unless you make something easier than the alternative, people just don’t have the bandwidth. The onus is on the designer, not the consumer for this. We can do better – please do!

Is there anything you’ve run across that was packaged ridiculously? Let us know below!

Advertisements

Rethinking batteries

close up photo of batteries

Photo by Hilary Halliwell on Pexels.com

As an engineer, I’m always thinking of how to make the objects around me work better. After rereading Cradle to Cradle this year, I’ve also been considering how to balance the needs of the present and the end of an object’s life.

When I was an undergrad, I did research in energy materials, so my interest was piqued when I saw the Volta Battery concept by Koraldo Kajanaku that won the Cradle to Cradle Product Design Challenge. Designed to be easily disassembled and made with materials that can easily be returned to technical or biological cycles, the battery is an excellent example of everyday objects that could be made better through thoughtful design.

The current ways in which we build batteries, solar panels, and wind turbines can’t get us all the way to a 100% renewable, solarpunk future. Elements such as the lithium used in cellphone batteries are rare and have some hurdles to true recyclability. Lead acid batteries, while more easily recycled, contain materials that are very hazardous to human health when not properly contained. Lithium batteries are an amazing technology, but we should be finding more readily recyclable alternatives for applications that don’t absolutely require the high energy density that a lithium chemistry affords. Aluminum, iron, nickel, and zinc could use a little more love when it comes to research and development. Nickel iron cells, for example, are likely the most robust chemistry available. They are quite heavy at the moment, but they might be one of the best options for grid backups since they don’t require the coddling that other technologies do. For the tidalpunks out there, you might want to check out ocean batteries.

More diversity of battery chemistries could lead to more energy democracy in energy storage. Communities could build the chemistry that uses the most local resources to back up their renewables. When paired with more sustainably designed windmills or solar thermal plants, we could do a lot more with a lot fewer rare earth minerals. Mechanical approaches to energy storage are also an attractive option. As is often the refrain with sustainable design, there is no silver bullet, we need many different solutions to fit the many different use-cases in existence. The 20th century was concerned with trying to shoehorn all our problems into a fossil fuel-shaped hole. The 21st will be defined by a diverse and beautiful ecosystem of solutions.

Is there an everyday object that you wish was designed more thoughtfully? Let us know below!

Energy: A Human History – Review

jacket_1_rev-small

Energy: A Human History by Richard Rhodes chronicles the development of industrial power sources with a focus on the innovators and scientists who developed the technologies. Starting in Elizabethan England with none other than William Shakespeare, Rhodes weaves a compelling tale of the western world’s energy sources starting with the transition from wood to coal in 1600s Britain.

The book paints the picture of the industrialists we now love to hate as human beings with hopes, dreams, and failings. It can be hard to remember after so long that James Watt and Henry Ford were once actual, living beings, and that they had hoped to make the world a better place with their inventions.

Drawing from many primary sources, Rhodes has lifted many gems of what the people of the time found concerning about these new technologies. With references to coal as “the devil’s excrement,” and many other such epithets, one might wonder why such dirty fuels ever became predominant. As Rhodes points out in the book though, industrialization with coal and other fossil fuels led to a near doubling of human life span and a higher standard of living. Rhodes does devote a fair bit of the book to the work that various towns and nations did to combat the air quality problems associated with the use of fossil fuels to varying degrees of success.

Concerns were not just constrained to air quality. Safety of steam engines, locomotives, and automobiles were a great concern of the time. As to cars, we have definitely come out on the wrong end of that technology with many US cities being designed for cars instead of people, but some of the concerns for trains seem amusing now as this quote Rhodes found shows.

“What can be more palpably absurd and ridiculous,” asked a reviewer for London’s Quarterly Review who favored a plan for a railway to Woolwich, “than the prospect held out of locomotives traveling twice as fast as stagecoaches! We should as soon expect the people of Woolwich to suffer themselves to be fired off upon one of Congreve’s… rockets, as trust themselves to the mercy of such a machine going at such a rate… We trust that Parliament will, in all railways it may sanction, limit the speed to eight or nine miles an hour, which… is as great as can be ventured on with safety.”

If you are firmly anti-nuclear, the end of the book will not be to your liking. As a cautiously optimistic person regarding nuclear energy, I feel the author may be a bit nuke-happy. Many of his points in favor of nuclear base loads are legitimate, however. Current nuclear generation technologies have been shown by IPCC and NREL (National Renewable Energy Laboratory) analysts to have a carbon footprint similar to wind and solar. With many cities and states looking at 100% renewable commitments, including nuclear as a base load to counter the intermittency of renewable sources seems reasonable in geologically stable areas. Unfortunately, when states set “renewable” goals for their energy goals, they sometimes include waste incineration, which is both gross and bad for local air quality.

Beside its overly-western focus, the other main shortcoming of the book is its relatively light treatment of renewable technologies. There was very little regarding solar, hydro, and wind, and I’m not sure if geothermal was mentioned at all. I suspect that this was due to a desire of the author to focus on the technologies that were the primary drivers of industrialization. Regardless, I think this is a good treatment of the subject of modern industrial energy sources and the people who brought them to fruition.

Do you have any recommendations for other books about energy generation or transmission? Let us know below!

Solarpunk Phones Part 3: Rethinking Design

[This is Part 3 of a series about solarpunk phones. Here are links to Part 1: Repair and Part 2: Decentralize.]

There are essentially two extremes to technological design: the all-in-one device or the single-tasker. Take, for example, the knife. There are lots of single purpose knives – paring, cleaver, steak, etc. There are also several different types of multi-function knives, the best known being the Swiss Army knife. Depending on what task you have at hand, you would select the best knife for the job. Out and about, sometimes the best way to go is to carry the Swiss Army knife, but since it’s a multi-function device, it isn’t usually the best tool for the job, even though a lot of the time it is pretty decent at several different things. Unfortunately, the more functions you cram into a Swiss Army knife, the less useful it becomes at any single task. There’s a certain break-even point where it just gets ridiculous.

Image shows 8 Swiss Army knives from left to right with an increasinly large number of functions.

Victorinox pocket knives by quattroman76 under a CC BY-ND 2.0

While smartphones can do a great many things, since they aren’t really designed to do one specific task, they end up sacrificing the ability to do any one thing really well. I wonder if we’ve lost something by trying to unify all of our devices. Our mobile technology has become a monoculture compared to the wide variety of form factors of phones before a single slate of glass became the norm.

Before the consolidation of iPhone-esque design hit the scene, some people thought the future would be a cloud of wearable devices, the Personal Area Network (PAN). While carrying a number of single-focus gadgets on a common network may not be the best solution for everyone, it could be game changing for some. Also, broader acceptance of PANs might lead to more innovation in the smartphone space with regards to form factor. While there are rumblings of foldable phones, I can’t help but think those are merely an evolution of the current iPhone-centric design school.

This slideshow requires JavaScript.

This slideshow requires JavaScript.

This slideshow requires JavaScript.

Random sketches I made of different hubs/accessories for a PAN-based device

Modular, open source electronics architectures would be a step in the right direction, allowing designers to select off-the-shelf components for inclusion in many different types of devices. The closest things I’ve seen on the market would be the Fairphone, which we’ve mentioned before, and the RePhone Kit, which is an Arduino-compatible phone kit from Seeed Studio. It’s a neat little phone hacking platform that lets people build their own phones. Unfortunately, Rephone is only 2G data capable, meaning no data connection in the US. Motorola gets an honorable mention for the Moto-mods system that lets you add different features to your phone through a special port on the back of their Z-series phones.

Of course it isn’t solarpunk if we aren’t designing with the impact of the device in mind from the beginning. Dominic Muren’s  Skin, Skeleton, and Guts model for product design is one approach to this design problem. When coupled with the Cradle to Cradle idea of separate biological and technical nutrient cycles, I can imagine future devices where the skin of the device is a compostable fabric that can be changed to suit the style of the user, while the metal skeleton and modular, electronic “guts” could be reused in further technical cycles.

TL;DR

In short, when approaching the design of a solarpunk phone, I would want modular components to be at the core to allow for more diversity of form factors like there once was in the mobile space. Also, devices should be designed for the circular economy using safe and reusable/recyclable materials.

Do you have any ideas for what should go into a solarpunk smarphone? Would a PAN be too cumbersome, or do you find that the “Jack of all trades, master of none” nature of the smartphone isn’t worth the trade-offs? Let us know below!

The Green New Deal and Solarpunk

If you’ve been following US Politics, you may have heard rumblings of a Green New Deal. My first encounter with the term was during the 2012 Presidential Election when Jill Stein noted the necessity of mobilizing the nation to combat climate change and improve the economy at the same time. Seven years later, the US has made little progress at the federal level in addressing climate change. The few exceptions to this are being contested by the Trump administration including CAFE standard improvements and the Clean Power Plan. With the IPCC’s October 2018 report saying we have 12 years to get our act together, it’s time to declare war on climate change.

For a very in-depth look at the Green New Deal, check out David Roberts’ piece at Vox. There are three main criteria for the GND as outlined by Representative-elect Alexandria Ocasio-Cortez and reiterated by Sunrise Movement on Twitter:

As a solarpunk, it’s hard to argue with the goals of the Green New Deal. As a pragmatist, it’s hard to see much happening in the current political climate in regards to real climate action at the scale of the Green New Deal. It isn’t all gloom and doom though, as there does seem to be a glimmer of hope for the two biggest policy changes that I think will bring us closer to a solarpunk future: a price on carbon, and term limits for Congress.

panoramic shot of sky

Photo by Pixabay on Pexels.com

Pricing Carbon

As Sara E. Murphy points out in her piece at Green Biz, while the Green New Deal is the attention-getting piece of legislation, we’re likely to see significant push-back from the Republicans in Congress. A carbon tax or cap-and-trade scheme is starting to see some traction on both sides of the aisle, however, such as the Energy Innovation and Carbon Dividend Act of 2018 with it’s mix of Republican and Democratic sponsors. Putting a price on carbon is the most straightforward way to get the private sector reducing emissions of carbon dioxide here in the US. Even many Libertarians see the logic in accounting for externalities, particularly when they impact people’s rights to the commons of the atmosphere.

While the federal government in the US has fallen behind in climate leadership, California has already enacted a cap-and-trade system for carbon dioxide emissions, and there are many state and local initiatives working to stay on track with emissions targets set by the 2015 Paris Agreement. One that is particularly exciting is the United States Climate Alliance, which will be adding even more members following the 2018 midterm elections.

Term limits for US Congress

Why am I including a possible Amendment to the US Constitution as something to help us reach a solarpunk future? This video from Term Limits for US Congress is a more detailed answer, but the long and short of it is that Congress no longer represents the people. With some recent polls showing that even the majority of Republicans support environmental protection and climate action, it’s increasingly clear that the old guard on Capitol Hill is out of touch with the majority of Americans. The newest members of Congress are a closer match to the actual demographics of the country, but we still have a long way to go to having true representation in DC.

architecture bright building capitol

Photo by Pixabay on Pexels.com

There are two mechanisms for passing a Constitutional Amendment in the United States. The first requires both the House and the Senate to approve the Amendment by a supermajority, at which point the Amendment must be ratified by 38 of the 50 states. Senator Ted Cruz has proposed a Constitutional Amendment that would limit Senators to two terms and Representatives to three terms, but getting career politicians on The Hill to fire themselves seems like a tough sell.

The second way to pass an Amendment, as laid out in Article 5 of the US Constitution, is for 34 states to call for a convention regarding a specific topic where they hammer out the proposed Amendment. Once ratified by 38 of the 50 states, it becomes part of the Constitution just like any of the other Amendments that have been enacted.

My wish list for 2019 would be that we get a price on carbon and term limits for Congress. It might be a tall order, but solarpunks are an optimistic lot, so there is still hope in the face of the strong institutional opposition to climate action.

Do you have any thoughts on what legislative pressure points might be best for affecting climate action in your area? Sound off below!

 

Cradle to Cradle – A review

Book cover for Cradle to Cradle - blue top and green bottom with mirrored vehicle silhouettes

Cradle to Cradle – Remaking the Way We Make Things

Cradle to Cradle by William McDonough and Michael Braungart is about envisioning a better way to manage human interactions with the natural world. The authors ask,

“What if humans designed products and systems that celebrate an abundance of human creativity, culture, and productivity? That are so intelligent and safe, our species leaves an ecological footprint to delight in, not lament?”

Starting from the beginnings of the Industrial Revolution, they analyze the design decisions that led capitalist society to the environmental crossroads it faces today. While things weren’t quite so dire in 2002 when the book was written, its analyses of the pitfalls of rampant industrialization are thorough and thought provoking.

The most refreshing part of this book though is it isn’t just a list of where capitalism went wrong and why we’re all doomed. Cradle to Cradle outlines ways in which designers, engineers, and scientists can work together to deconstruct the current way we make things and redesign our material lives to benefit the natural world. The main idea, which I find to be very solarpunk, is to look at how in nature there is no waste. Everything serves a purpose in the environment. The fruit of the cherry tree feeds birds and animals while those animals spread the seeds of the tree. The droppings of those birds and animals fertilize the ground where the cherry tree and its offspring grow so that they can offer more food. Everything has its place in the cycle.

In one project, a shampoo was redesigned from scratch to only have positive effects by carefully selecting every chemical going into it, including the bottle. Herman Miller had a new factory designed including natural lighting, more ventilation, and a “street” with plants inside to bring nature closer to the workers. As we saw with the Nature Fix, bringing humans and nature together has positive benefits for human health, and by bringing the outdoors in, Herman Miller was able to bring its new focus on environmental sustainability to the forefront.

photo of pile of ripped carton

Photo by Luka Siemionov on Pexels.com

The book isn’t just anecdotes and feel-good aphorisms, it also includes a framework for how to approach design to ensure maximum good. One of the ongoing themes in the book is that so far, most industry has tried to do less bad to the environment when it cares at all, but it’s time to go a step further and see how we can take industry and make it improve the world around us.

A success story in this vein tells of a textile factory in Europe that worked to make a better upholstery fabric for office chairs. When the regulators came to check the factory’s wastewater (effluent), they were confused as the water coming out of the plant was cleaner than that going in.

The equipment was working fine; it was simply that by most parameters the water coming out of the factory was as clean as — or even cleaner than — the water going in. When a factory’s effluent is cleaner than its influent, it might well prefer to use its effluent as influent. Being designed into the manufacturing process, this dividend is free and requires no enforcement to continue or to exploit. Not only did our new design process bypass the traditional responses to environmental problems (reduce, reuse, recycle), it also eliminated the need for regulation, something that any businessperson will appreciate as extremely valuable.

One of the things I’m hoping to investigate further in 2019 is the circular economy, and I think the design strategies outlined in Cradle to Cradle are a good first step in this direction. I found there is a followup book called The Upcycle written in 2013 that I will be checking out from the library soon.

Have you read Cradle to Cradle or have thoughts on the circular economy? Let us know below!

2018 – A Retrospective

fireworks photo

Photo by Peter Spencer on Pexels.com

When I started Solarpunk Station in January, I was hoping to address some of the more common criticisms of the movement. Namely, there’s not enough practical solarpunk, and that solarpunk is’t really punk, just a lot of pretty, utopic pictures without any substance.

In the upcoming year, I’m hoping to refocus and bring you more practical solarpunk projects. Writing a book review about the health benefits of nature is a lot easier than getting out in the woods to experience it. Writing about cryptocurrency is a lot simple than exploring the limits of distributed manufacturing technology.

Right now, I’m in the planning stages of two modest, but real projects that I hope to share in 2019. Do I hope to do more? Yes. But I need to start somewhere, and I’ve learned that when I try to start too big I might not be able to finish.

In the face of all that’s going on, I realize that trying to live more sustainability might seem pointless. I think finding a better way to live that is lighter on Mother Earth is something that I need to do for me. Trying to make more sustainable choices is something that helps me feel more in tune with the world around me. I’m no enviro-saint; I’m just trying to do the best I can and learning from my mistakes along the way.

Feel free to forgive yourself and learn. When you come across climate deniers or other people with belligerent world views, remember that ideals and ideas are mutable. I was once a climate skeptic, but after meeting with scientists at NOAA (National Oceanic and Atmospheric Administration) I was able to see why the concern was real.

Encourage open-mindedness in your opponents through empathy and understanding. Shouting matches rarely breed thoughtful discourse. That said, it’s not your responsibility to convert the world. There are toxic, dangerous people out there, so if something feels off, disengage. Don’t feel obligated to get yourself hurt trying to convince people that climate change is real. If you’re a brave soul who can go out to protests and direct action, more power to you. If you can write your elected officials or sign a petition, that’s great too. There’s no one way to win the fight for a solarpunk future, so do what you can, when you can.

I’m a maker, so I’m going to try to use my skills to make this world a little better. If you can, see what skills you have and think of ways you can use your powers for good. Feel free to share any ideas or questions below.