Tag Archives: lunarpunk

Where we’re going, we don’t need roads

Something you might not notice right away in the solarpunk future is the lack of noise pollution. One of the reasons for this is, of course, the electrification of transport, but the second will be the significantly reduced dependence on personal automobiles for mobility.

From http://bcnecologia.net/sites/default/files/annex_5_charter_for_designing_new_urban_developments.pdf

Road Hierarchy in the new Superblock Model by BCN Ecologia

When Salvador Rueda first started studying how to reduce noise levels in his home of Barcelona, he quickly found that high-speed automobile traffic was responsible for the bulk of the noise pollution in his city. When you take into account that cars are responsible for the majority of child deaths in the US it becomes clear that designing cities for automobiles hasn’t left a lot of room for the humans that live there. Barcelona’s “superblock” program aims to restrict through traffic to a limited number of arteries and keep neighborhood traffic to a human scale 10 kph (6 mph) in shared streetscapes.

Continued pedestrian and bicyclist deaths in cities committed to Vision Zero has resulted in a call to ban cars from city centers. When coupled with the climate impacts of personal automobiles, regardless of their power source, it seems logical to restrict the usage of automobiles to city edges and rural areas.

Better public transit with reasonable service levels and level boarding like that seen in some street car projects would be a boon for residents while micromobility options like scooters, bicycles, and Neighborhood Electric Vehicles (NEVs) could provide solutions for the “last mile.” Some NEVs have been designed specifically with wheelchair users in mind; however, it seems that they never quite made it to market. Introduction of these vehicles along with more prevalent accessible cycles can help us build a transportation system that is for people instead of cars.

To extend this human-scale vision of the city further, we may one day not need roads at all. Paolo Soleri felt roads separated people and designed his living laboratory in the Sonoran Desert to exclude them. Arcosanti is the world’s first arcology, or architecture designed around the idea that a city is it’s own ecological system. Passive energy management and high density mean that residents can spend more time living instead of working to cover mundane expenses like unnecessarily large heating or cooling bills. As a prototype, Arcosanti doesn’t seem particularly accessible, but I believe future arcologies or acology-minded developments should be able to incorporate the appropriate infrastructure without issue.

Despite decades of poor planning and squandered resources, I have hope that our public transit and transportation infrastructure are on the cusp of a renaissance. Even here in Charlottesville, we’re taking a serious look at building complete streets and revitalizing our public transit system. As we deal with rolling back the poor planning decisions of the 20th Century, we can build a more inclusive, healthier, and more pleasant transportation experience for our cities. One of the key components of this will be relegating the automobile to a support role in our society instead of the star of the show.

Is your locality implementing any changes to improve transportation for humans over personal vehicles? Do you have a shiny new streetcar or are you a resident of one of the few enclaves of car free life left in the world? Let us know below!

 

 

 

 

Advertisements

Tidalpunk, logistics, and degrowth

Grist recently ran an article about a Costa Rican project to build a carbon neutral shipping fleet using traditional wooden boat building techniques including sails as the primary means of propulsion. Maria Gallucci writes that the worldwide commercial shipping industry moves 10.7 billion tonnes of material every year, predominantly by diesel powered megaships.

This seems particularly problematic when we look at the 262 million tonnes of municipal waste generated in the US alone every year. The article about the Costa Rican fleet said sailing vessels wouldn’t be able to make up a large proportion of the shipping fleet, but the question I had was, “Do we really need to be shipping this much stuff?”

While capitalism is based on unending, cancerous growth, there is a growing community of people around the world investigating how dialing back the economy could be better for people and the planet. When coupled with a circular economy, the degrowth movement points toward a brighter, greener future like that envisioned in solarpunk. Decentralized, local production of goods using recycled technical and biological nutrients would lead to a more resilient and less energy-intensive supply chain.

Some front-line communities are already leading the charge against climate change by developing solutions that are much more relevant to their local environment than the one-size-fits-all techno-solutionism often argued for in the US and other western countries.

What do you think? Should we just find “sustainable” ways to keep consumption at it’s current levels, or should we reevaluate our relationships with material goods? Let us know below!

Tidalpunk: Come Home to the Sea

A picture of a green-blue bay against a blue sky with whispy clouds. Above the bay is a rocky cliff with houses of various colors ascending the hill above it.

Photo by Pixabay on Pexels.com

Many think life on Earth started in the oceans, and while there is scientific debate on that front, there’s no denying that humans have been drawn to the water since before we built the first city on the banks of the Euphrates. With an estimated 80% of the world’s population living within 100 km (~60 mi) of a coastline, it’s no surprise that solarpunk has a sibling that brings this love of the water front and center – tidalpunk.

Tidalpunk takes the environmental consciousness and appropriate technology of solarpunk to the high seas. Sailing ships, autonomous seasteads, and cities flooded by the rising waters of climate change populate visions of a tidalpunk future. I suspect that due to the Moon’s influence on the tides, tidalpunk and lunarpunk will find some interesting synergies.

Return of the Sail

boat classic clouds cruise

Photo by Inge Wallumrød on Pexels.com

The shipping industry currently accounts for 2.3% of carbon emissions, and the industry is targeting a 50% reduction in emissions by 2050. Most cargo ships run on diesel now, but we once sailed the seas using the renewable power of the wind. While having a backup propulsion method available would be prudent, when the wind is blowing, cargo could move without the use of fossil fuels. Low Tech Magazine has written several articles about the potential of bringing back sailing ships as cargo vessels. Our current cargo fleet could even be retrofitted with tethered, kite-like sails.

Seasteading

An artificial island in a rough c-shape. It is covered in grass and has several berths for boats.
Proposed artificial Island in French Polynesia by Blue Frontiers

Seasteading covers a variety of concepts for humans to make their home in the sea. Proponents of seasteading point to overcrowding and a lack of social innovation on land as reasons to move seaward. Some projects that could be considered under this umbrella are Sealand, various underwater habitats, and aircraft carriers.

delta_printer_1-8419da34982ad3af20046088872ca1c7cedbd1d9abd347586fdab267be6a52a1

A member of Project Entropy demonstrating a delta-style 3D printer

Project Entropy is a solarpunk makerspace flotilla with the aim to address plastic waste in the ocean and convert it into useful objects. The self-described micronation is also experimenting with distributed governance while it expands the frontiers of distributed manufacturing. While the Seasteading Institute and Blue Frontiers have interesting visions of the future, Project Entropy is making it real right now. Another project already on the water is the Flipiflopi, a boat built entirely from plastic recovered from the ocean and roadsides in Kenya.

A muli-colored sailboat sits in shallow water just off a white, sandy beach. Many people are on the boat and the shore. A Kenyan flag flies high above the solar panel on the boat.

The Flipiflopi recycled boat

The SeaOrbiter science vessel is one of the most exciting projects happening in the space. Planned as a full-time, ocean-going science vessel, the SeaOrbiter will have on-board laboratories and allow extended observation of the ocean. Parts of the ship will be kept at higher pressure to allow scientists to dive more often than would be possible from a surface vessel due to decompression issues like the bends.

A profile view of the SeaOrbiter science vessel. It has a large mast which pokes 27 m above the waterline. Another 31 m of the vessel are below the waterline. The vessel has various living quarters, laboratories, and is powered by wind and solar.

A profile view of the SeaOrbiter

Flooded Cities

boat near to dock

Photo by Daniel Frank on Pexels.com

Venice is the most well known flooded city in the world, but rising seas will soon give the world a number of similar locales. Even Venice is preparing for rising floodwaters with the MOSE Project, a giant flood gate designed to mitigate the worst tides from the Adriatic. NOAA has built an Interactive Sea Level Rise Map to show what areas will be most impacted by different sea level rise scenarios. In the US, Miami is particularly vulnerable since it’s geology precludes a flood gate or wall system like MOSE.

Where to Start

If tidalpunk sounds like something you’d like to investigate further, here are some resources to check out:

Do you have any experiences with tidalpunk? Let us know below or send us a comment on Sunbeam City. Thanks for coming aboard!

Saving the world, one apple core at a time

20190120_215150

The compostable bag from our recycling center.

I don’t have a green thumb. I’m trying a garden again this year, but despite my grandparents cultivating a host of vegetables right next door to me growing up, it wasn’t ever something I really learned how to do. My fear of dirt and the outdoors as a child was a contributing factor.

One thing I’ve associated with gardening that I find extra intimidating is composting. This year, I’m going to give it a shot through the local recycling center. I picked up a little green bag when I was taking our recycling into the center, so I’ll be feeding it with food waste and plant clippings.

I really hate wasting food, but even I have my limits to how far past an expiration date I’m willing to eat something. As ILSR notes in “How Community Composting Disrupts Big Waste,” composting can create jobs, reduce food waste, and fight climate change.

Are you a composter? Do you compost at home or through your community?

Getting my hands dirty

Last Saturday, we decided to get our solarpunk gardener on and planted some herbs and flowers. We’re in Zone 7 here in Charlottesville, so we’re trying some snapdragons and petunias outside and starting a kitchen herb garden as well. Later on we’ll be starting some peppers.

20190221_170027_Richtone(HDR)

Getting dirty

The green germination trays were printed last year in a not-so-successful attempt at growing flowers, so hopefully we’ll have better luck this year. The white bags are wrapped around small plastic pots that go into a holder that is supposed to help the herbs not get over-watered. This is a particularly big concern here in Charlottesville as we’ve noticed everything molds quite quickly due to the humidity.

8 herb packets arranged in two rows and four columns. The herbs include basil, rosemary, oregano, parsley, cilantro, thyme, dill, and sage.

Herb packets

We had to stay away from some herbs since we have cats and not all are cat-safe. The ASPCA has a good database for plant toxicity for cats, dogs, and horses. Now that everything is planted all we have to do is wait.

20190223_205912

Everything in its place

Do you garden? Are there any plants that you love to grow?

Making it real…

As you may recall, I want to find ways to bring more practical solarpunk into my life and into the world. To that end, I purchased a Raspberry Pi 3 B+ kit made by Canakit. I’m hoping to explore some of the ideas I discussed regarding solarpunk phones and communications during the last few weeks. I’m not an electronics savant by any means, so we’ll see if my hobbyist level skills can cobble anything interesting together out of the kit.

Box containing a Raspberry Pi 3 B+ and breadboard for electronics experiments

On a related note, I also just ordered a new wifi-enabled wall switch to control the lights in our main living area. While that isn’t particularly solarpunk, I think reflashing the electronics to not be dependent on a third party service is. As sold, the switch requires downloading and using an app that sends data out to the web through servers owned by Samsung and then back to my apartment to control my lights. This is both creepy and seems silly since the lights are right above the voice assistant I’m using to control them. Why do I need servers hundreds of miles away involved in this conversation?

I’ve had good luck with the Sonoff-Tasmota firmware from GitHub for other smart home devices, and will be using the information from their wiki to attempt to reflash this new switch. Since it’s a totally different piece of equipment, I’m a little nervously optimistic about the results. If all goes well, the switch will only talk to my local network and the only connection to the outside world will be through Alexa.

Wifi-enabled smart switch with front cover removed. Green circuit board is exposed showing a TYWE3S wifi chip. Other components are hidden from view as they're on the back side of the board.

At some point, I’m hoping to switch to a more privacy-centric voice assistant like Mycroft or Snips, but getting all of my smart home devices other than my voice assistant to be local only should make the transition simpler once I do get that setup. The Raspberry Pi will be an important part of this transition as I’m hoping to begin testing Mycroft and/or Snips once I’ve gotten some of the basic input/output bits of the Pi figured out.

Raspberry Pi 3 B+ in transluscent plastic case

If all goes well, then I’ll try building a mobile voice assistant that can kick result data to a simple linked smartwatch like a Pebble. I sketched out a highly detailed schematic for your pleasure below.

Screen Shot 2019-02-21 at 3.19.46 PM

I’m not sure how hard the communication with a watch will be, but the first step will be getting the voice assistant going on the Raspberry Pi. After deciding which AI is better to work with then I’ll try adding battery power and watch communications.

What are some of the ways you are making solarpunk real? Let us know below!

Solarpunk Phones Part 3: Rethinking Design

[This is Part 3 of a series about solarpunk phones. Here are links to Part 1: Repair and Part 2: Decentralize.]

There are essentially two extremes to technological design: the all-in-one device or the single-tasker. Take, for example, the knife. There are lots of single purpose knives – paring, cleaver, steak, etc. There are also several different types of multi-function knives, the best known being the Swiss Army knife. Depending on what task you have at hand, you would select the best knife for the job. Out and about, sometimes the best way to go is to carry the Swiss Army knife, but since it’s a multi-function device, it isn’t usually the best tool for the job, even though a lot of the time it is pretty decent at several different things. Unfortunately, the more functions you cram into a Swiss Army knife, the less useful it becomes at any single task. There’s a certain break-even point where it just gets ridiculous.

Image shows 8 Swiss Army knives from left to right with an increasinly large number of functions.

Victorinox pocket knives by quattroman76 under a CC BY-ND 2.0

While smartphones can do a great many things, since they aren’t really designed to do one specific task, they end up sacrificing the ability to do any one thing really well. I wonder if we’ve lost something by trying to unify all of our devices. Our mobile technology has become a monoculture compared to the wide variety of form factors of phones before a single slate of glass became the norm.

Before the consolidation of iPhone-esque design hit the scene, some people thought the future would be a cloud of wearable devices, the Personal Area Network (PAN). While carrying a number of single-focus gadgets on a common network may not be the best solution for everyone, it could be game changing for some. Also, broader acceptance of PANs might lead to more innovation in the smartphone space with regards to form factor. While there are rumblings of foldable phones, I can’t help but think those are merely an evolution of the current iPhone-centric design school.

This slideshow requires JavaScript.

This slideshow requires JavaScript.

This slideshow requires JavaScript.

Random sketches I made of different hubs/accessories for a PAN-based device

Modular, open source electronics architectures would be a step in the right direction, allowing designers to select off-the-shelf components for inclusion in many different types of devices. The closest things I’ve seen on the market would be the Fairphone, which we’ve mentioned before, and the RePhone Kit, which is an Arduino-compatible phone kit from Seeed Studio. It’s a neat little phone hacking platform that lets people build their own phones. Unfortunately, Rephone is only 2G data capable, meaning no data connection in the US. Motorola gets an honorable mention for the Moto-mods system that lets you add different features to your phone through a special port on the back of their Z-series phones.

Of course it isn’t solarpunk if we aren’t designing with the impact of the device in mind from the beginning. Dominic Muren’s  Skin, Skeleton, and Guts model for product design is one approach to this design problem. When coupled with the Cradle to Cradle idea of separate biological and technical nutrient cycles, I can imagine future devices where the skin of the device is a compostable fabric that can be changed to suit the style of the user, while the metal skeleton and modular, electronic “guts” could be reused in further technical cycles.

TL;DR

In short, when approaching the design of a solarpunk phone, I would want modular components to be at the core to allow for more diversity of form factors like there once was in the mobile space. Also, devices should be designed for the circular economy using safe and reusable/recyclable materials.

Do you have any ideas for what should go into a solarpunk smarphone? Would a PAN be too cumbersome, or do you find that the “Jack of all trades, master of none” nature of the smartphone isn’t worth the trade-offs? Let us know below!